Program Review
This program prepares you to be employed at the technician level or higher on computers, industrial computer networks, programmable logic controllers (PLCs), and instruments. PLCs are often the heart of the control portion of the manufacturing process. You will have both classroom and hands-on laboratory instruction with several systems to help you understand computer and PLC interfacing, control systems, network installation, and administration.

Special Feature
This program is unique in the state. The first year of the Industrial Automation, Controls, and Networking program and the Information Technology - Network Specialist program at New Richmond are the same. Second-year students have the option to continue with the Industrial Automation, Controls, and Networking program or pursue the Information Technology - Network Specialist program. (See page 102 for more information on the IT - Network Specialist program.)

Student Profile
As a Industrial Automation, Controls, and Networking student, you should be able to:

• Apply scientific principles and technical knowledge
• Perform mathematical computations accurately
• Evaluate data from tests and observations
• Work with precise standards
• Enjoy scientific and technical work
• Enjoy mechanical work requiring precision
• Work independently and with others
• Communicate clearly
• Be self-motivated

Preparation for Admission
The following experiences will help you prepare for this program:

• Algebra/Geometry
• English/Speech/Creative Writing
• Economics/Business
• Basic Computer Skills

Program Outcomes
Employers will expect you, as an Industrial Automation, Controls, and Networking graduate, to be able to:

• Identify system and network requirements.
• Evaluate and recommend hardware/software.
• Install and support LAN/communication busses.
• Install and maintain hardware/software/cabling.
• Develop and maintain system documentation.
• Troubleshoot the hardware and software involved with PLCs, instruments, and control systems.
• Utilize effective communication skills.

Career Outlook
After graduating from the Industrial Automation, Controls, and Networking program, you will be ready to start your career as a(n):

• Computer Technician
• Network Technician
• Field Service Technician
• Control Systems Technician
• Instrument Technician
• Programmable Logic Controller (PLC) Technician
• Industrial Automation Technician

Curriculum

<table>
<thead>
<tr>
<th>Number</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>10150110</td>
<td>Computer and Internet Concepts</td>
<td>3</td>
</tr>
<tr>
<td>10150111</td>
<td>Cisco 1</td>
<td></td>
</tr>
<tr>
<td>10150112</td>
<td>Cisco 2 ▲</td>
<td>3</td>
</tr>
<tr>
<td>10150117</td>
<td>Microsoft LAN Administration ▲</td>
<td>3</td>
</tr>
<tr>
<td>10150121</td>
<td>Hardware/Software Installation ▲</td>
<td>2</td>
</tr>
<tr>
<td>10154102</td>
<td>Microcomputer Operating Systems 1</td>
<td>2</td>
</tr>
<tr>
<td>10154103</td>
<td>Microcomputer Operating Systems 2 ▲</td>
<td>3</td>
</tr>
<tr>
<td>10065167</td>
<td>Electricity 1 ▲</td>
<td>2</td>
</tr>
<tr>
<td>10065168</td>
<td>Electricity 2 ▲</td>
<td>2</td>
</tr>
<tr>
<td>10631100</td>
<td>Introduction to Process Control</td>
<td>2</td>
</tr>
<tr>
<td>10631102</td>
<td>Industrial Power Electronics ▲</td>
<td>2</td>
</tr>
<tr>
<td>10631103</td>
<td>Process Control and Instrumentation ▲</td>
<td>3</td>
</tr>
<tr>
<td>10631104</td>
<td>Smart Instruments ▲</td>
<td></td>
</tr>
<tr>
<td>10631105</td>
<td>Industrial Networks and Communication Buses</td>
<td>2</td>
</tr>
<tr>
<td>10631106</td>
<td>Supervisory and Distributed Control Systems ▲</td>
<td>3</td>
</tr>
<tr>
<td>10631107</td>
<td>Industrial Automation Case Project ▲</td>
<td>1</td>
</tr>
<tr>
<td>10631108</td>
<td>PLC Programming and Interfacing ▲</td>
<td></td>
</tr>
<tr>
<td>10631109</td>
<td>Industrial AC, Motor Control, and Pilot Devices ▲</td>
<td>3</td>
</tr>
<tr>
<td>10631110</td>
<td>Advanced PLC Programming and Interfacing ▲</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>10801195</td>
<td>Written Communication ● ●●</td>
<td>3</td>
</tr>
<tr>
<td>10801196</td>
<td>Oral/Interpersonal Communication ● ●●</td>
<td>3</td>
</tr>
<tr>
<td>10801197</td>
<td>Technical Reporting ● ●●</td>
<td>3</td>
</tr>
<tr>
<td>10804113</td>
<td>College Technical Mathematics 1A</td>
<td>3</td>
</tr>
<tr>
<td>10804114</td>
<td>College Technical Mathematics 1B ▲</td>
<td>2</td>
</tr>
<tr>
<td>10809144</td>
<td>Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>10809166</td>
<td>Introduction to Ethics: Theory and Application</td>
<td>3</td>
</tr>
<tr>
<td>10809198</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

Program Requirements

This course requires a prerequisite and/or corequisite, and must be completed with a grade of “C-” or better.

Appropriate placement score or Introduction to College Writing course required.
Course Descriptions

10150110 Computer and Internet Concepts - Credits: 3
An introduction to the study of computers and computer systems used in today’s business world. The focus is on basic computer terminology and concepts. Students will also learn basic logic gates, numbering systems, and Internet concepts. The student will create a simple Web page using standard Hypertext Markup Language (HTML) tags.

10150111 Cisco 1 - Credits: 3
Cisco 1 provides an introduction to the networking field. Topics covered include network terminology and protocols, local-area networks (LANs), wide-area networks (WANs), Open Systems Interconnection (OSI) model, cabling, tools, routers, router programming, Ethernet, Internet Protocol (IP) addressing, and network standards.

10150112 Cisco 2 - Credits: 3
Cisco 2: Routers and Routing Basics is the second of four CCNA courses leading to the Cisco Certified Network Associate (CCNA) designation. Cisco 2 focuses on initial router configuration, Cisco IOS software management, routing protocol configuration, TCP/IP, and access control lists (ACLs). Students will develop skills on how to configure a router, managing Cisco IOS software, configuring routing protocol on routers, and set the access lists to control the access to routers. PREREQUISITE: 10150111 Cisco 1.

10150117 Microsoft LAN Administration - Credits: 3
This course provides students with training in the skills necessary to perform day-to-day network administration using Microsoft LAN Server products. At completion of this course students will be able to create and manage user and group accounts, determine account policies, troubleshoot login problems, and set up file system security. In addition, students will set up a printing environment, administer and troubleshoot network printers, use auditing functions and security logs, monitor network resources, and back up and restore files and folders. Client workstation connectivity and related administrative tasks will be covered. PREREQUISITE: 10154102 Microcomputer Operating Systems 1.

10150121 Hardware/Software Installation - Credits: 2
This course will prepare students to install hardware and software. You will learn to properly install various types of hardware and software on an IBM-compatible personal computer. This lecture- and lab-based course will use both group and individual activities. PREREQUISITE: 10154102 Microcomputer Operating Systems 1.

10154102 Microcomputer Operating Systems 1 - Credits: 2
A review of the most common command line operations and study of more advanced commands necessary to configure the Windows 2000 operating system for a variety of environments. Topics to be studied include creating directories, batch files, menus, custom configurations, file management, multitasking, windowing, security, and disk management utilities. There will be an introduction to usage, configuration, and tools of the Windows 9.3 operating system.

10154103 Microcomputer Operating Systems 2 - Credits: 3
In this course the Linux operating system is examined in-depth with emphasis on features, capabilities, tools, and configurations including an introduction to network configurations. Additional topics will examine Unix-like systems like MAC OS. PREREQUISITE: 10154102 Microcomputer Operating Systems 1.

10605167 Electricity 1 - Credits: 2
Electricity 1 is a lecture/hands-on course designed to introduce students to basic electrical terminology, laws, concepts, instrumentation, and application. Hands-on activities will be stressed to reinforce electrical concepts related to practical applications dealing with computer networks. Topics covered will include electrical safety, terminology and symbols, electrical laws, basic circuits, multimeter use, DC, power supplies, and troubleshooting. Critical thinking skills are emphasized to develop competencies in problem solving and troubleshooting. COREQUISITE: 10804113 College Technical Mathematics 1A.

10605168 Electricity 2 - Credits: 2
This course is designed to introduce students to the basic concepts of alternating current. Emphasis is placed on circuit analysis and problem-solving skills necessary for the maintenance of modern industrial electrical systems. PREREQUISITE: 10605167 Electricity 1.

10631100 Introduction to Process Control - Credits: 2
The Introduction to Process Control course explains the function of basic devices for measuring and controlling different kinds of variables in process control. It introduces closed-loop control, PID functions, analog and digital devices, and control system applications. It also covers instrumentation symbols and the interpretation and use of process diagrams.

10631102 Industrial Power Electronics - Credits: 2
The Industrial Power Electronics course is an on-site hands-on course dealing with the electronics that are used to control, power, and operate machines and processes in the modern manufacturing plant. The course includes the study and use of the oscilloscope and digital multimeter, thyristors, AC, DC, stepper and servo motor drive systems, photoelectric switches, and miscellaneous field devices. PREREQUISITE: 10605167 Electricity 1 or equivalent.

10631103 Process Control and Instrumentation - Credits: 3
The Process Control and Instrumentation course offers hands-on skill exercises on controlling and manipulating temperature, pressure, flow, and level in the manufacturing process. Students will be able to identify, connect, operate, troubleshoot, and perform preventive maintenance on the components that form a process control system. PREREQUISITE: 10605167 Electricity 1 or equivalent and COREQUISITE: 10631100 Introduction to Process Control.

10631104 Smart Instruments - Credits: 2
The Smart Instruments course introduces students to smart instruments including temperature devices, pressure devices, and smart control valves. Students will be able to calibrate, configure, and troubleshoot smart devices. Students will be able to identify appropriate applications for smart instruments. PREREQUISITE: 10631100 Introduction to Process Control or equivalent.

10631105 Industrial Networks & Communication Buses - Credits: 2
This course introduces networks, communication busses, and protocols used in industrial applications. Students will be able to discuss strengths and weaknesses of each communications solution and pick the most appropriate for given applications.

10631106 Supervisory and Distributed Control Systems - Credits: 3
This course will provide an overview exposure to networking distributed control systems and data acquisition systems. Included are PLCs, data acquisition systems, Single Loop Controllers, Smart Devices, and Distributed Control Systems. Students will connect, configure, and operate a simulated process that includes the elements of distributed control and data acquisition systems. PREREQUISITES: 10631100 Introduction to Process Control and 10631108 PLC Programming and Interfacing or equivalent.

10631107 Industrial Automation Case Project - Credits: 1
The primary focus of this course is to have the students receive exposure and experience with an industrial process control or manufacturing automation system. Students will complete a project or research dealing with an existing process in an area industry or complete an advanced project in the lab dealing with applications of industrial networks, sensors, control, and data acquisition. PREREQUISITE: 10631100 Introduction to Process Control, 10631102 Industrial Power Electronics, 10631103 Process Control and Instrumentation, 10631108 PLC Programming and Interfacing, and 10631109 Industrial AC, Motor Control, and Pilot Devices.

10631108 PLC Programming and Interfacing - Credits: 3
PLC Programming and Interfacing offers students a hands-on approach to implementing industrial control by integrating typical plant floor electrical components with microprocessor-based controllers. Students will learn to identify and connect field inputs and outputs; communicate with, and program microprocessor-based controllers. Students will also connect, communicate with, and develop displays for computer-based operator interfaces. PREREQUISITE: 10605167 Electricity 1 or 32414438 (A) AC/DC Circuits or 32414359 (B) AC/DC Circuits.

10631109 Industrial AC, Motor Control, and Pilot Devices - Credits: 3
This course gives students the opportunity to learn about AC theory, circuits, and control devices used in industry. The course begins with an overview of AC theory including resistance, inductance, and capacitance. The course includes topics on AC and DC motors, motor controls, and pilot devices. The student will engage in hands-on activities with real industrial components to enable them to recognize, select, apply, and troubleshoot industrial electrical control circuit components. PREREQUISITE: 10605167 Electricity 1 or equivalent.

10631110 Advanced PLC Programming and Interfacing - Credits: 3
Advanced PLC offers students a hands-on approach to implementing industrial control using modern controllers to implement programs that utilize advanced functions. Students will complete hands-on activities with Allen Bradley Control Logix PLCs. The course will examine the use of basic instructions and addressing with RSLogix 5000 as well as more advanced PLC instructions in Ladder Logic and Function Block. Other topics include PLC configuration and commissioning, communications with RSNet, OPC, and RSNetwork, HMI configuration using Wonderware and/or RSView. PREREQUISITE: 10631108 PLC Programming and Interfacing.

Graduate Employment Information (WITC Graduate Survey Responses 2005-2006)

<table>
<thead>
<tr>
<th>Number of graduates</th>
<th>Number employed</th>
<th>% employed in WITC district</th>
<th>Number of responses</th>
<th>Percent employed</th>
<th>Range of yearly salary</th>
<th>Number available for employment</th>
<th>Employed in related field</th>
<th>Average yearly salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>33%</td>
<td>4</td>
<td>100%</td>
<td>-</td>
<td>4</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>